

Distribution System Analysis Tools for Solar Integration

Tom McDermott
MelTran, Inc.
(chair of UWIG Distributed Wind UG)

UWIG Solar User Group Meeting April 14, 2010 Portland, OR

Objectives

- Technically sound method of aggregating small size PV on distribution systems
- Efficient tool for PV impact studies
- Optimal control strategies for distributed PV
- Promote and leverage the development of models and tools

Distribution Software Tasks

Current Flow and Voltage Drop

Overcurrent Protective Device Coordination

Fuse Saving?

Status of Distribution Software

- Tools with DG-specific functions
 - CYMDIST
 - OpenDSS
- Others have conventional SG/IG models
- CAPE and ASPEN have current-limited sources
 - ASPEN DistriView might not have this
- What happens with "many" PV sources; i.e., strongly looped systems?
- Keep pushing software vendors!

UWIG Screening Tool Inputs

• WTG Library

• Estimate Z

UWIG Screening Tool Outputs

FERC Fast-Track Acceptance (not in all jurisdictions)

- Design is certified (UL 1741)
- Project size ≤ 2 MW
- Size ≤ 15% of Segment Load
- Contribute ≤ 10% Utility Fault Current
- -All Utility Devices ≤ 87.5% Fault Rating
- -(capacity factor for info only)

Voltage Change ≤ 5%

Flicker Planning Levels (IEEE Std. 1453)

- Continuous, $P_{ST} \le 0.9$
- Switching, $P_{ST} \le 0.9$ and $P_{LT} \le 0.7$

Screening Outputs:				
WTG Portion of Peak Load	68.83	%		
WTG Fault Contribution	0.35	kA		
WTG Portion of System Fault	29.24	9⁄0		
FERC Fast-track?	Study Required due to Load Level, Fault Level			
Estimated Capacity Factor	22.5	%		
Flicker Outputs:				
System Apparent Power	26.08	MVA		
System Impedance Angle	73.60	Degrees		
On/Off Voltage Change	1.97	%		
Continuous P _{ST}	0.14			
Switching P _{ST}	0.71			
Switching P _{LT}	0.50			
Feeder Simulator Economic Analysis				

Shortcut to a Feeder Simulator Model

Distributed Wind Impacts Project

Screening Tool Background

Estimated % Voltage Change:

$$V_{drop} = \frac{100}{U_n^2} (R_1 + jX_1)(P_n - jQ_n)$$

$$\frac{dV}{U_n} = \sqrt{(100 + \text{Re}V_{drop})^2 + (\text{Im}V_{drop})^2} - 100$$

 $(R, X \text{ in ohms}, S_n \text{ in MVA}, U_n \text{ in kV})$

Flicker Estimates:

$$P_{st-c} = C_f(\phi, v) \frac{S_n}{S_k}$$

$$P_{st-k} = 15^3 \sqrt[2]{N_{10}} K_f \frac{S_n}{S_k}$$

$$P_{lt-k} = 6.9^3 \sqrt[2]{N_{120}} K_f \frac{S_n}{S_k}$$

Multiple WTG Weighting:

$$P_{c} = \sqrt{\sum_{i} P_{c-i}^{2}}$$

$$P_{k} = \sqrt[3.2]{\sum_{i} P_{k-i}^{3.2}}$$

UWIG Feeder Simulator

Feeder Simulator Features

- Voltage fluctuations with variable power output, capacitor switching, and tap changing
- Faults and overcurrent protection with DG
- Temporary overvoltage during backfeed
- Two connection points for DG
- MultiSpeak Import
- Streamlined Model Creation from the Screener
- OpenDSS Export

Sample Voltage Fluctuations

PV Profiles at Different Power Factor Show the Potential for Voltage Control

IEEE Std. 1453 Flicker "Meter"

* Optional for extended measuring applications

- u Implement this in software
- u Any voltage fluctuation produces a single output

Flicker Severity	Compatibility Level	Planning - MV	Planning – HV & EHV
Level			
P _{st} [10-minute]	1.0	0.9	0.8
P _{lt} [120-minute]	1.0	0.7	0.6

UWIG 4-Day Study Process

- Estimate Probability of Substation Export
- Feeder-level Analysis
 - Evaluate application vs. IEEE Std. 1547
 - Power variation impact on voltage profile and control
 - Review regulator and capacitor control settings
 - Systematic fault analysis with and without DG
 - Temporary overvoltage analysis
 - Review and specify relay settings
- Letter Report

Existing Power Profiles

40-minute Wind

Conventional Generator

Daily PV (50 kW Unit)

3-Hour Wind with Different Numbers of Turbines

How to Aggregate Multiple DG?

- Distribution tools need time steps down to 1 second for voltage control simulations
- Markov chains?
 - Reproduce probability density, but not autocorrelation
 - This problem is worse at shorter time steps

From Brokish & Kirtley, "Pitfalls of Modeling Wind Power Using Markov Chains", IEEE PSCE 09.

Also discussed in Y. Wan's NREL reports.

Other Aggregation Approaches

- All these are suitable for software implementation
 - Autoregressive Moving Average (ARMA)
 - Wavelets
 - Artificial Neural Networks and other Heuristics
- Allow users to choose or upload a single-unit power profile
- Reduce the standard deviation around the scaled power profile for multiple units (NREL data for wind, need some data for PV)

Wind Turbine Generator Models

- General wind turbine model types (per WECC, IEEE, Cigre)
 - − Type 1 − conventional induction generator
 - Type 2 wound rotor induction generator, variable rotor resistance
 - − Type 3 − doubly-fed induction generator

Impacts Project

Integration Group

- Type 4 full converter interface, similar to PV
- We need reasonable average short-circuit contributions to check overcurrent device coordination on the feeder

Doubly-Fed Induction Machine

Figure 2.1 Overview - GE 1.5MW WTG

With Rotor Crowbar, looks like an Induction Machine

Current-Limited DR

WTG Models for Distribution

Turbine Type	Power Flow	Short Circuit
1 – Squirrel Cage	Constant Q or PF	Locked Rotor
2 – Wound Rotor	Include Capacitor Switching Steps	(about 6 * Rated Current)
		$Xdp \approx 0.17$
3 – Doubly Fed	Constant Q or PF	Limited by
	Inherently No Cap	Converter
4 – Power Electronic	Not a PV bus per IEEE Std. 1547	$Xdp \approx 0.50 - 0.90$

What is Needed for PV?

- Aggregate models of variability
- Fast-average models of dynamic response to faults
- A common format for vendor-supplied models
- Software tools that:
 - Simulate variability
 - Simulate fault contributions from many PV units

Backup – WTG Types 1 and 2

- Power flow, input scheduled P and Q
 - Given voltages, solve for speed, current, machine Q
 - Add capacitor steps to approximate scheduled Q
- Short circuit
 - I_{qs}, I_{ds}, I_{qr}, I_{dr} already initialized
 - Use "fast average" model for currents

$$p\overline{I}_{qs} = \frac{\overline{V}_{qs} - r_s \overline{I}_{qs} - \overline{\omega}_r L_s \overline{I}_{ds} - \overline{\omega}_r L_m (\overline{I}_{qs} + \overline{I}_{qr})}{L_s}$$

Backup – WTG Types 3 and 4

- Inputs
 - Scheduled P and Q
 - Limits on Ip and Iq
 - Time delay to reset
- Normal power flow solution for a PQ source
- Short-circuit solution
 - Assume a low equivalent impedance
 - Apply separate limits on I_p and I_q, inject the total
- Later, fast-average model for rotor crowbar

Conclusions

- More DR models in commercial software
- Modeling options in commercial software
 - Behavioral (equation-based) is easier for users
 - Standard languages are easier for users
- Vendor-supplied DR models
 - Protecting proprietary information
 - In portable formats
 - Semiconductor, automotive, and other industries already do this

